Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal University of Reims Champagne-Ardenne

Fractionation of AgroResources and Environment lab

LASHERMES Gwenaëlle

Research scientist INRA
Gwenaelle __

Adress : INRA, 2 esplanade Roland-Garros, BP 224, 51686 Reims cedex 2, France

Tél : +33 (0)3 26 77 35 82

Fax : +33 (0)3 26 77 35 99

Mail. : gwenaelle.lashermes@inra.fr

Researcher ID

ResearchGate

Career

2010- Research scientist of INRA (French National Institute for Agricultural Research), UMR INRA-URCA FARE, Reims, France

2006-2010: PhD student of ADEME (French Environment and Energy Management Agency) -INRA, UMR INRA-AgroParisTech, Thiverval –Grignon, France

2005-2006: Research engineer of ADEME-INRA, UMR INRA-AgroParisTech EGC, Thiverval –Grignon, France

2005: Master student, UR INRA of Agronomy, Laon-Reims-Mons, and UMR INRA-AgroParisTech EGC, Thiverval –Grignon, France

2004: Undergraduate student, Agro Sans Frontière, Rennes, field in Senegal

2003: Undergraduate student, Department of Ecology and Evolutionary Biology, SUNY, Stony Brook, USA, field in Costa Rica

Education

2010: Doctor of Philosophy (Ph. D.) in environmental sciences, Doctoral School ABIES of AgroParisTech

2005: Master of Engineering in Agronomy, National Higher Agronomic School of Rennes (ENSAR), France

2003-2004: Optional undergraduate training period abroad

Skills

Processes: biological transformations of organic matters (soils, mulch, composting, retting). Interactions between lignocellulosic substrates and microorganisms. Interactions between organic pollutants and organic matter. C storage, organic matter mineralization.

Modeling: EEZY, GDM, CANTIS, COP-Compost, “residue” module of STICS, RothC, “RETTING” module, etc.

Experiment: enzyme assays, experimental devices, microcosms, respirometry, biochemical analyses (residues, organic wastes), organic pollutant speciation, isotopic labeling (14C), fungal growth.

Statistics: indicator and typology calibration of degradation behavior

Research interests

My research activities concern the modeling of the biodegradation processes of lignocellulosic substrates (crop residues, roots, forest litter) in soils or at their surface. Their aim is to improve our understanding of the interactions between microorganisms and their decomposing substrates and the representation of these interactions in numerical models. I am particularly interested in the microbial physiological and enzymatic responses in function of the chemical and physical traits of organic substrates. Timescales vary between days and years and spatial scale are fine (µm3 au cm3).  The issues are to better understand decomposition process in order to be able to better integrate nutrients recycling in agroecosystems management and better predict organic matter stabilization and C storage in soils.

See also Sylvie Recous , scientist in the same lab for further information about our activities.

Teaching

Since 2015- Agronomy module (Master of agro-resource production and sustainable development, URCA): Introduction to agronomy and agronomic models, Effects of crop system on their environment.

Since 2015- Module of Soil and Environment (Master of Sciences, Technologies, Health, URCA): Soil organic matter and C, N, P, S biogeochemical cycles, decomposition process.

2012-2013-Module of soil organic matter and waste management (Master of continental biosphere and soils, AgroParisTech, UPMC, Doctoral School ABIES): Coupling of biogeochemical cycles of C, N, P, S in soils.

2009- Ecosystems of food and water module (Master of applied microbiology and biological engineering, AgroParisTech): Technologies and microbiology of composts.

2008-2009- Bio-depollution module (Engineering in agronomy, 2nd year, AgroParisTech): Fate of pollutants during composting and in soils.

Main publications

Recous S., Lashermes G., Bertrand I., Duru M., Pellerin S. (2018). C-N-P decoupling processes linked to arable cropping management systems in relation with intensification of production.  In: Agro-ecosystem Diversity: Reconciling Contemporary Agriculture and Environment Quality, Gilles Lemaire, Paulo Carvalho, Scott Kronberg & Sylvie Recous eds., Elsevier. Chapitre 3, pp 35-53. DOI

Bleuze L, Lashermes G, Alavoine G, Recous S, Chabbert B. (2018) Tracking the dynamics of hemp dew retting under controlled environmental conditions. Industrial Crops and Products 123, 55-63. DOI

Sauvadet M, Lashermes G, Alavoine G, Recous S, Chauvat M, Maron PA, Bertrand I (2018). High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biology and Biochemistry, 64–73. DOI

Dignac, M.-F., Derrien, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, G., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P.-A., Nunan, N., Roumet, C., Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37:14 (2).DOI 

Lashermes G, Gainvors-Claisse A, Recous S and Bertrand I (2016) Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots. Frontiers in Microbiology 7:1315. DOI 

 Moorhead D.L.*, Lashermes, G*, Recous, S., Bertrand, I. (2014) Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis. Plos One, 9 (9). *co-first authors. DOI

Iqbal, A., Garnier, P., Lashermes, G., Recous, S. (2014) A new equation to simulate the contact between soil and maize residues of different sizes during their decomposition. Biology and Fertility of Soils, 50, 645-655. DOI 

Geng, C., Haudin, C.-S., Zhang, Y., Lashermes, G., Houot, S., Garnier, P. (2015) Modeling the release of organic contaminants during compost decomposition in soil. Chemosphere, 119, 423-431. DOI

Zhang, Y., Lashermes, G., Houot, S., Zhu, Y., Barriuso, E., Garnier, P. (2014) COP-compost: a software to study the degradation of organic pollutants in composts. Environmental Science and Pollution Research, 21 (4), 2761-2776. DOI

Moorhead, D.L., Lashermes, G., Sinsabaugh R.L., Weintraub, M.N., 2013. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biology & Biochemistry, 66, 17-19. DOI

Haudin, C.S., Zhang, Y., Dumény V., Lashermes, G., Bergheaud, V., Barriuso, E., Houot, S., 2013. Fate of 14C-organic pollutant residues in composted sludge after application to soil. Chemosphere, 92, 1280-1285. DOI

Lashermes, G., Zhang, Y., Houot, S., Steyer, J.P., Patureau, D., Barriuso, E., Garnier, P. 2013. Simulation of organic matter and pollutant evolution during composting: the COP-Compost model. Journal of Environmental Quality, 42, 1-12 (Open Access). DOI

Moorhead, D.L., Lashermes, G.,Sinsabaugh, R.L., 2012. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biology &Biochemistry, 53, 133-141. DOI

Zhang, Y., Lashermes, G.,Houot, S., Doublet, J., Steyer, J.P., Zhu, Y.G., Barriuso, E., Garnier, P., 2012. Modelling of organic matter dynamic during the composting process. Waste Management, 32, 19-30. DOI

Lashermes, G., Barriuso, E., Le Villio-Poitrenaud, M., Houot, S. 2012. Composting in small laboratory pilots: performance and reproducibility. Waste Management, 32, 271-277. DOI

Lashermes G., Houot S., Barriuso E., 2012. Dissipation pathways of organic pollutants during the composting of organic waste. Chemosphere, 87, 137-143. DOI

Lashermes G., Houot S., Barriuso E., 2010. Sorption and mineralization of organic pollutants during different stages of composting. Chemosphere, 79, 455-462. DOI

Lashermes G., Nicolardot B., Parnaudeau V., Thuriès L., Chaussod R., Guillotin M.L., Linères M., Mary B., Metzger L., Morvan T., Tricaud A., Villette C., Houot S., 2010. Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization. Bioresource Technology, 101, 157-164. DOI

Lashermes G., Nicolardot B., Parnaudeau V., Thuriès L., Chaussod R., Guillotin M.L., Linères M., Mary B., Metzger L., Morvan T., Tricaud A., Villette C., Houot S., 2009. Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science, 60, 297-310. DOI

Graduate students co-directed

A. Iqbal (2010-2013). Effects of nature and decomposition of crops residue mulches on the services provided by soils in conservation agriculture: University of Reims Champagne-Ardenne.

L. Bleuze (2015-2018). Study and modeling of the retting process of fibrous plant. Université de Reims-Champagne Ardenne.

V. Chandra (2018-2021). Gaseous nitrogen emissions from decomposing crop residues: experimental and modelling approaches. Université Pierre et Marie Curie - Sorbonne Universités. FARE and ECOSYS labs.