En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Université de Lorraine

UMR EEF - Ecologie et Ecophysiologie Forestières

          www.nancy.inra.fr/eef

Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory

05 décembre 2017

Rödig, E. ; Cuntz, M. ; Heinke, J. ; Rammig, A. ; Huth, A.
Global Ecology and Biogeography, 2017, 26 (11) : 1292-1302.
Article
Aim: Estimating the current spatial variation of biomass in the Amazon rain forest is a challenge and remains a source of substantial uncertainty in the assessment of the global carbon cycle. Precise estimates need to consider small-scale variations of forest structures resulting from local disturbances, on the one hand, and require large-scale information on the state of the forest that can be detected by remote sensing, on the other hand. In this study, we introduce a novel method that links a forest gap model and a canopy height map to derive the biomass distribution of the Amazon rain forest. Location: Amazon rain forest. Methods: An individual-based forest model was applied to estimate the variation of aboveground biomass across the Amazon rain forest. The forest model simulated individual trees; hence, it allowed the direct comparison of simulated and observed canopy heights from remote sensing. The comparison enabled the detection of disturbed forest states and the derivation of a simulation-based biomass map at 0.16 ha resolution. Results: Simulated biomass values ranged from 20 to 490 t (dry mass)/ha across 7.8 Mio km(2) of Amazon rain forest. We estimated a total aboveground biomass stock of 76 GtC, with a coefficient of variation of 45%. We found mean differences of only 15% when comparing biomass values of the map with 114 field inventories. The forest model enables the derivation of additional estimates, such as basal area and stem density. Main conclusions: Linking a canopy height map with an individual-based forest model captures the spatial variation of biomass in the Amazon rain forest at high resolution. The study demonstrates how this linkage allows for quantifying the spatial variation in forest structure caused by tree-level to regional-scale disturbances. It thus provides a basis for large-scale analyses on the heterogeneous structure of tropical forests and their carbon cycle.